
May , 2025

Noma - Audit Report Table of Content

Table of Content
Table of Content 02

Executive Summary 05

Number of Issues per Severity 09

Checked Vulnerabilities 10

Techniques & Methods 12

Types of Severity 14

Types of Issues 15

High Severity Issues 16

1. Inaccessible defaultLoans() Function Prevents Collateral Seizure 16

2. withdraw() function transfers available balance instead of minAmoun-
tOut

17

www.quillaudits.com 02

Noma - Audit Report Table of Content

Medium Severity Issues 18

1. Loan Can Be Repaid After Expiry, Bypassing Collateral Seizure 18

2. DoS Risk Due to Incorrect Handling of Negative Return Values from
UniswapV3Pool.swap()

19

3. Unrestricted Loan Operations on Behalf of Other Users 20

4. Anyone Can Trigger Finalization Prematurely After Soft Cap 21

5. Call to payReferrals() function will always fail 22

6. Contracts can be reinitialized without reentrancy protection 23

7. AdaptiveSupply incorrectly uses totalSupply instead of deltaSupply
leading to excessive token minting

25

8. Loan rollover function restricts extending loan duration, contrary ex-
pected behavior

28

9. Incorrect Epoch Initialization and Duplicate Epoch Numbers 29

10. Noma Token Proxy Not Upgradeable 30

11. Inaccurate Slippage Calculation 31

12. Self-Referral Abuse Allows Users to Earn Discounts 32

13. Inconsistent use of transfer methods in LendingVault could lead to
failed token transfers

33

14. Front-Running the notifyReward Call to Exploit Rebase Gains 34

www.quillaudits.com 03

Noma - Audit Report Table of Content

Low Severity Issues 36

1. Presale can exceed hardcap 36

2. Comments mismatch with slippage value 37

3. stake() function takes _to value can cause revert 38

4. GonsToken implementation only supports upward rebasing 39

5. Missing Emergency Switch, Contribution Constraints, and State Sync in
Emergency Withdrawals

41

6. _authority Parameter Unused in Constructor 43

Informational Severity Issues 44

1. No self transfer check in GonsToken contract 44

2. Ambiguity in onlyVault modifier allows both vault and staking contract
to call protected functions

45

3. Unused modifiers 46

4. Redundant condition in TokenFactory's _deployNomaToken function 47

5. Mismatched NatSpec comments and code structures can cause confu-
sion

48

6. Commented out solvency variant 49

7. numVaults() is a gas-hungry function that can be optimized by reading
the totalVaults variable

50

8. Identical Function Signatures: mintTokens(address,uint256) in Multiple
Contracts

51

9. Missing Lender Controls Over Loan Rollovers 52

10. Missing or Extra Struct Variables Compared to Docstrings 53

Closing Summary & Disclaimer 54

www.quillaudits.com 04

Noma - Audit Report Executive Summary

Executive Summary

Project name Noma

Project URL https://noma.money/

www.quillaudits.com 05

https://noma.money/

Noma - Audit Report Executive Summary

Overview Noma Protocol is a sophisticated defi protocol intended to
operate as a automated market maker (AMM) with a guar-
anteed minimum intrinsic value (IMV) for its native coin and
still have the capability to repurchase its entire circulating
supply if necessary. Noma is based on Uniswap V3's model
of concentrated liquidity, and it strategically organizes its
liquidity into three critical layers to maximize price stability
and capital efficiency:

The Floor – This base layer pools liquidity into a very narrow
band (the smallest possible "tick" in Uniswap V3) to ensure
the IMV, serving as a backstop on extreme market declines.

The Anchor – Between the IMV and the prevailing market
price, this layer allows for seamless price movements by
soaking up volatility while also supporting the token's floor
value.

The Discovery – The most external liquidity layer enables
natural price discovery during bull runs, allocating supply in
an efficient manner as demand rises.

With Noma's "up-only" feature, the trading fees and profits
derived from the protocol automatically get cycled back into
the Floor liquidity, incrementally boosting the IMV over time.
This results in a positive feedback mechanism, whereby in-
creased trading activity directly fortifies the token's price
floor.

In addition to liquidity management, Noma brings per-
missionless lending with the ability for users to borrow
ETH against their holdings of NOMA at 100% collateral-
ization—minus the threat of liquidation. Because loans are
backed by assets through the IMV (not market price), capi-
tal efficiency and security are afforded to borrowers. When a
loan is not repaid, the collateral is burned, maintaining pro-
tocol's solvency without compelled liquidations.

Also, Noma has a staking mechanism in which users lock
their tokens to earn sNOMA, a rebasing reward token. Any
excess liquidity due to upward price action is burned to
mint new tokens, rewarded to stakeholders, encouraging
long-term involvement.

www.quillaudits.com 06

Noma - Audit Report Executive Summary

Audit Scope https://github.com/noma-protocol/core_contrac-
ts/tree/dev/src

Contracts in Scope src/interfaces/IsNomaToken.sol
src/interfaces/IDiamond.sol
src/interfaces/IDiamondLoupe.sol
src/interfaces/IFacet.sol
src/interfaces/IVaultUpgrades.sol
src/interfaces/IAddressResolver.sol
src/interfaces/IDiamondCut.sol
src/interfaces/IVault.sol
src/interfaces/IModelHelper.sol
src/interfaces/IDeployer.sol
src/vault/BaseVault.sol | src/vault/LendingVault.sol
src/vault/StakingVault.sol | src/vault/ExtVault.sol
src/vault/deploy/EtchVault.sol
src/vault/init/VaultFinalize.sol
src/vault/init/VaultUpgrade.sol
src/factory/TokenFactory.sol
src/factory/ExtFactory.sol
src/factory/DeployerFactory.sol
src/factory/NomaFactory.sol
src/factory/PresaleFactory.sol
src/Deployer.sol | src/Diamond.sol | src/Resolver.sol
src/controllers/supply/RewardsCalculator.sol
src/controllers/supply/AdaptiveSupply.sol
src/model/Helper.sol src/staking/Staking.sol
src/staking/Gons.sol | src/libraries/Conversions.sol
src/libraries/LibAppStorage.sol
src/libraries/LibDiamond.sol
src/libraries/LiquidityDeployer.sol
src/libraries/LiquidityOps.sol
src/libraries/Logarithm.sol | src/libraries/MathInt.sol
src/libraries/Underlying.sol | src/libraries/Utils.sol
src/bootstrap/Presale.sol | src/bootstrap/Bootstrap.sol
src/bootstrap/token/pAsset.sol
src/facetsDiamondLoupeFacet.sol
src/facets/OwnershipFacet.sol
src/types/Types.sol | src/init/DiamondInit.sol
src/token/MockNomaTokenRestricted.sol
src/token/MockNomaToken.sol
src/token/RebaseToken.sol

Commit Hash 358936c3b788e84f387833a5b0b76f193f4fa0cd

www.quillaudits.com 07

https://github.com/noma-protocol/core_contracts/tree/dev/src

Noma - Audit Report Executive Summary

Language Solidity

Blockchain Ethereum

Method Manual Review, Functional Testing, Automated Testing

Review 1 March 7 - April 22, 2025

Updated Code Received https://github.com/noma-protocol/core_contracts/tree/au-
dit_ready

Review 2 April 28- May 6, 2025

Fixed In 54e4dda06bff679560fcb11688b023aa152130ec

www.quillaudits.com 08

https://github.com/noma-protocol/core_contracts/tree/audit_ready

Noma - Audit Report

33
Total Issues

2 (6.06%)

15 (45.45%)

6 (18.18%)

10 (30.30%)

0 0 0 0

2 14 6 2

0 1 0 8

0 0 0 0

www.quillaudits.com 09

Noma - Audit Report Checked Vulnerabilities

Checked Vulnerabilities

Access Management

Arbitrary write to storage

Centralization of control

Ether theft

Improper or missing events

Logical issues and flaws

Arithmetic Computations Correctness

Race conditions/front running

SWC Registry

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC’s conformance

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Multiple Sends

Using suicide

Using delegatecall

Upgradeable safety

Using throw

www.quillaudits.com 10

Noma - Audit Report Checked Vulnerabilities

Using inline assembly

Style guide violation

Unsafe type inference

Implicit visibility level

www.quillaudits.com 11

Noma - Audit Report Techniques & Methods

www.quillaudits.com 12

Noma - Audit Report Techniques & Methods

www.quillaudits.com 13

Noma - Audit Report

www.quillaudits.com 14

Noma - Audit Report

www.quillaudits.com 15

Noma - Audit Report High Severity Issues

High Severity Issues

Inaccessible defaultLoans() Function Prevents Collat-
eral Seizure

Resolved

Path
src/vault/LendingVault.sol

Function
defaultLoans()

Description
The defaultLoans() function, responsible for seizing collateral on expired loans, is currently not
callable due to its placement behind a proxy without proper exposure. It’s protected with onlyInternal-
Calls, and there is no external interface (such as from the ExtVault contract) making it accessible. As
a result, expired loans are not being defaulted and collateral cannot be reclaimed, potentially locking
significant protocol funds.

Impact
If left unresolved, borrowers with expired loans can indefinitely retain collateral without repayment,
leading to bad debt and capital inefficiency.

Recommendation
Expose the defaultLoans() function through the ExtVault or another externally accessible contract
that complies with access controls. Ensure that only authorized actors (e.g., managers, keepers) can
trigger it.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/ce25314ea253005f38bcd53895369efcf30ef4e2

www.quillaudits.com 16

https://github.com/noma-protocol/core_contracts/commit/ce25314ea253005f38bcd53895369efcf30ef4e2
https://github.com/noma-protocol/core_contracts/commit/ce25314ea253005f38bcd53895369efcf30ef4e2

Noma - Audit Report High Severity Issues

withdraw() function transfers available balance in-
stead of minAmountOut

Resolved

Path
src/bootstrap/Presale.sol

Function
withdraw()

Description
The withdraw() transfers the availableBalance for the token, instead it should be the amount calcu-
lated according to the number of pNoma tokens the user had. In withdraw() first it gets the balance of
the user, then burns the p-assets. Then calculates the minAmountOut value. Finally it transfers the
availableBalance instead of minAmountOut resulting in transfer of more than intended tokens.

Recommendation
To resolve the issue please make sure to change the availableBalance variable to minAmountOut in
withdraw() function.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/07738cfaaf56801bcde10e8bf12e790ca881efc3

www.quillaudits.com 17

https://github.com/noma-protocol/core_contracts/commit/07738cfaaf56801bcde10e8bf12e790ca881efc3
https://github.com/noma-protocol/core_contracts/commit/07738cfaaf56801bcde10e8bf12e790ca881efc3

Noma - Audit Report Medium Severity Issues

Medium Severity Issues

Loan Can Be Repaid After Expiry, Bypassing Collateral
Seizure

Resolved

Path
src/vault/LendingVault.sol

Function
paybackLoan

Description
The paybackLoan() function lacks a proper expiry check, allowing borrowers to repay loans even after
the loan.expiry timestamp. This violates expected loan mechanics where overdue loans should be
considered defaulted and handled via collateral seizure (_seizeCollateral()), not repayment.

Recommendation
1. Enforce block.timestamp <= loan.expiry within paybackLoan() to prevent post-expiry repayments.
2. Ensure defaultLoans() is the only path for handling expired loans.

Fixed in
https://github.com/noma-protocol/core_contracts/commit/60a0fdbe-
bc7a8e8dda837df4011e60459caf67e4

www.quillaudits.com 18

https://github.com/noma-protocol/core_contracts/commit/60a0fdbebc7a8e8dda837df4011e60459caf67e4
https://github.com/noma-protocol/core_contracts/commit/60a0fdbebc7a8e8dda837df4011e60459caf67e4

Noma - Audit Report Medium Severity Issues

DoS Risk Due to Incorrect Handling of Negative Return
Values from UniswapV3Pool.swap()

Resolved as
False Positive

Path
src/bootstrap/Presale.sol

Function
uniswapV3SwapCallback()

Description
In Uniswap V3, when performing an exact input swap, the swap() function returns negative deltas to
indicate that tokens were sent into the pool. However, the current implementation does not negate
these values when storing or processing them.
amount0 and amount1 are directly assigned as return values from the swap() call.
These values are negative for input amounts and positive for outputs.
Using these values without negation (e.g., for balance checks, internal accounting, or further trans-
fers) leads to logic errors or revert conditions.
Reference: https://docs.uniswap.org/contracts/v3/reference/core/UniswapV3Pool#swap

Recommendation
Always negate the return values when handling exact input swaps

Noma's Team Comment
amount0 and amount1 are uint256, wouldn't make much sense to use signed integers within the call-
back

www.quillaudits.com 19

Noma - Audit Report Medium Severity Issues

Unrestricted Loan Operations on Behalf of Other
Users

Resolved

Path
src/vault/ExtVault.sol & src/vault/LendingVault.sol

Function
borrow(), payback(), and roll()

Description
The borrow, payback, and roll functions allow any caller to initiate these actions on behalf of any
address (who parameter), assuming the target user has given allowance to the vault contract.
This setup enables malicious users to:
- Take loans for other users (if they’ve approved tokens),
- Forcefully repay others’ loans,
- Extend (roll) loan durations without consent.
There are no ownership, permission, or caller identity checks to ensure the msg.sender is authorized
to act on behalf of who.

Recommendation
Implement access controls such that only:
- The borrower (who) themselves, or
- A whitelisted delegate/manager contract
can perform borrow, payback, or roll actions for that address.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/ee9a33113a7cc4f7f582259fb5bdc3575d50ada4

And
https://github.com/noma-protocol/core_contracts/com-
mit/6b669859353052c53547b66d981d495995eaf459

www.quillaudits.com 20

https://github.com/noma-protocol/core_contracts/commit/ee9a33113a7cc4f7f582259fb5bdc3575d50ada4
https://github.com/noma-protocol/core_contracts/commit/ee9a33113a7cc4f7f582259fb5bdc3575d50ada4
https://github.com/noma-protocol/core_contracts/commit/6b669859353052c53547b66d981d495995eaf459
https://github.com/noma-protocol/core_contracts/commit/6b669859353052c53547b66d981d495995eaf459

Noma - Audit Report Medium Severity Issues

Anyone Can Trigger Finalization Prematurely After
Soft Cap

Resolved

Path
src/bootstrap/Presale.sol

Function
finalize()

Description
The finalize() function can be called by any external address once the soft cap is met. However, if the
protocol intends to continue raising funds until the hard cap is reached, this behavior prematurely
ends the presale and deploys liquidity.
There is no condition enforcing that the hard cap has been reached or the presale has expired, allowing
a malicious actor or a front-runner to finalize early, disrupting fundraising goals

Recommendation
Restrict finalize() to either:
- Be callable only by the owner or authorized role
- Uncomment the expired check

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/45a92f68cbeb70309c0a813a5dd240a04064876f

www.quillaudits.com 21

https://github.com/noma-protocol/core_contracts/commit/45a92f68cbeb70309c0a813a5dd240a04064876f
https://github.com/noma-protocol/core_contracts/commit/45a92f68cbeb70309c0a813a5dd240a04064876f

Noma - Audit Report Medium Severity Issues

Call to payReferrals() function will always fail Resolved

Path
src/bootstap/Presale.sol

Function
payReferrals()

Description
The call to payReferrals() will always fail, because during the finalize() function call the excess eth
has been already withdrawn and payReferrals makes it mandatory that it can be only called after the
presale is finalized.

Recommendation
To resolve the issue it is recommended that the owner should make sure that referrals have been
made first before withdrawing the excess eth. To fulfill the conditions owner can call the withdrawEx-
cessEth() in from payReferrals() function or to call it separately like payReferrals(). Another option is
to call payReferrals inside of the finalize() function before the _withdrawExcessEth() call is made.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/474ed4407d415f83f8a7cad569fedd989a2529a2

www.quillaudits.com 22

https://github.com/noma-protocol/core_contracts/commit/474ed4407d415f83f8a7cad569fedd989a2529a2
https://github.com/noma-protocol/core_contracts/commit/474ed4407d415f83f8a7cad569fedd989a2529a2

Noma - Audit Report Medium Severity Issues

Contracts can be reinitialized without reentrancy pro-
tection

Resolved

Path
src/Deployer.sol, src/staking/Gons.sol

Function
initialize()

Description
The initialize() function in the Deployer contract lacks proper reentrancy protection despite the con-
tract implementing a lock modifier elsewhere. This creates a vulnerability where the contract owner
could reinitialize the contract, potentially overwriting critical contract state and parameters. If the
owner is compromised at any time, the contract will be open to reinitialization and critical state vari-
ables that affect user interactions would be affected.

The same happens in the Gons contract, where the stakingContract can be reset by any user.

Recommendation
Add a check to prevent reinitialization and apply the lock/initializer modifier for consistency.

Fixed in
https://github.com/noma-protocol/core_contracts/commit/f28407a2451c1cbd-
ddee1874b27bf156de108b76

www.quillaudits.com 23

https://github.com/noma-protocol/core_contracts/commit/f28407a2451c1cbdddee1874b27bf156de108b76
https://github.com/noma-protocol/core_contracts/commit/f28407a2451c1cbdddee1874b27bf156de108b76

Noma - Audit Report Medium Severity Issues

And
https://github.com/noma-protocol/core_contracts/com-
mit/e07a5aa772eddf3c2f11f9fbd30ba513d2f037ef

www.quillaudits.com 24

https://github.com/noma-protocol/core_contracts/commit/e07a5aa772eddf3c2f11f9fbd30ba513d2f037ef
https://github.com/noma-protocol/core_contracts/commit/e07a5aa772eddf3c2f11f9fbd30ba513d2f037ef

Noma - Audit Report Medium Severity Issues

AdaptiveSupply incorrectly uses totalSupply instead
of deltaSupply leading to excessive token minting

Resolved

Path
src/controllers/supply/AdaptiveSupply.sol, src/libraries/LiquidityOps.sol

Function
reDeploy(), computeMintAmount()

Description
The LiquidityOps library incorrectly passes the total token supply instead of the change in supply
(delta) to the AdaptiveSupply.computeMintAmount() function, leading to significantly inflated mint
amounts during liquidity repositioning operations.

In the reDeploy() function of LiquidityOps.sol, when handling LiquidityType.Discovery positions and
minting tokens, the contract passes the token's total supply as the first parameter to computeMintA-
mount()

However, examining the AdaptiveSupply.sol contract confirms that the first parameter is intended to
be deltaSupply (the change in supply), not the total supply.

www.quillaudits.com 25

Noma - Audit Report Medium Severity Issues

Recommendation
Replace the use of totalSupply with an appropriate delta calculation in LiquidityOps.sol

Noma Team comment
Initially the algorithm used to compute mint amounts accepted a generic parameter, which I called
deltaSupply. While I changed the algorithm several times, I settled on the current implementation.
During real life testing I found out that total supply works better than the generic parameter delta
supply.

www.quillaudits.com 26

Noma - Audit Report Medium Severity Issues

See
https://github.com/noma-protocol/core_contrac-
ts/blob/5dfa744e9e25b14f01c755bb3ef09291ba39dfb0/test/supply/AdaptiveMint.t.sol#L151

Corroborated by test with
https://github.com/noma-protocol/core_contracts/com-
mit/d4ade8d30c51cb6b2a19c9f425826fa1cabd8aff

www.quillaudits.com 27

https://github.com/noma-protocol/core_contracts/blob/5dfa744e9e25b14f01c755bb3ef09291ba39dfb0/test/supply/AdaptiveMint.t.sol#L151
https://github.com/noma-protocol/core_contracts/blob/5dfa744e9e25b14f01c755bb3ef09291ba39dfb0/test/supply/AdaptiveMint.t.sol#L151
https://github.com/noma-protocol/core_contracts/commit/d4ade8d30c51cb6b2a19c9f425826fa1cabd8aff
https://github.com/noma-protocol/core_contracts/commit/d4ade8d30c51cb6b2a19c9f425826fa1cabd8aff

Noma - Audit Report Medium Severity Issues

Loan rollover function restricts extending loan dura-
tion, contrary expected behavior

Resolved

Path
src/vault/LendingVault.sol

Function
rollLoan()

Description
The rollLoan function in the LendingVault contract contains a logic error that prevents borrowers from
extending their loan duration, which contradicts the typical expectation of a loan rollover functionality
expected to allow new loans

The issue is in the validation check for newDuration. The function reverts if the new duration is longer
than the original loan duration, which prevents users from extending their loans. This contradicts
the expected behavior of a loan rollover, which typically allows users to extend their loan period in
exchange for additional fees or interest.

Recommendation
Remove or modify the duration check to allow loan extensions.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/3ff96dbe3b6a371f09a0fb3af3dbcf25551158e

www.quillaudits.com 28

https://github.com/noma-protocol/core_contracts/commit/3ff96dbe3b6a371f09a0fb3af3dbcf25551158e
https://github.com/noma-protocol/core_contracts/commit/3ff96dbe3b6a371f09a0fb3af3dbcf25551158e

Noma - Audit Report Medium Severity Issues

Incorrect Epoch Initialization and Duplicate Epoch
Numbers

Resolved

Path
src/staking/Staking.sol

Function
notifyRewardAmount()

Description
The constructor() initializes the first epoch with number = 1 and distribute = 0. Later in notifyRewar-
dAmount(), when totalEpochs == 1, it forcibly sets the reward to epoch.distribute (i.e., 0), leading to
zero rewards for the first real epoch.
Additionally, the newly created epoch inside notifyRewardAmount() is assigned number = totalE-
pochs, which is already used by the previous epoch. This results in two epochs with the same number,
which breaks the uniqueness assumption of epoch identifiers.

Recommendation
- Initialize the first epoch with number = 0 and only store it if needed as a placeholder
- Use epoch.number = totalEpochs before storing in epochs[totalEpochs] and incrementing
- Ensure epoch.number is always unique and in sync with totalEpochs

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/b2dbb0aad8b8208ca73da69d6d8ed69676a99d7d

www.quillaudits.com 29

https://github.com/noma-protocol/core_contracts/commit/b2dbb0aad8b8208ca73da69d6d8ed69676a99d7d
https://github.com/noma-protocol/core_contracts/commit/b2dbb0aad8b8208ca73da69d6d8ed69676a99d7d

Noma - Audit Report Medium Severity Issues

Noma Token Proxy Not Upgradeable Resolved

Path
src/factory/NomaFactory.sol

Function
N/A

Description
The upgradeToAndCall() function in the proxy contract triggers _authorizeUpgrade(), which is re-
stricted by the onlyOwner modifier. However, the NomaFactory contract lacks any function or mech-
anism to invoke upgradeToAndCall() on the Noma token proxy.
As a result, the Noma token becomes effectively non-upgradeable, preventing any future upgrades,
fixes, or enhancements.

Recommendation
Introduce an upgrade mechanism that allows a trusted admin (e.g., NomaFactory, a multisig, or time-
lock) to call upgradeToAndCall() securely, preserving upgradability as intended

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/a250d1d6938b440a4694bc7be524adf84144c4d2

www.quillaudits.com 30

https://github.com/noma-protocol/core_contracts/commit/a250d1d6938b440a4694bc7be524adf84144c4d2
https://github.com/noma-protocol/core_contracts/commit/a250d1d6938b440a4694bc7be524adf84144c4d2

Noma - Audit Report Medium Severity Issues

Inaccurate Slippage Calculation Resolved

Path
src/libraries/Uniswap.sol

Function
swap()

Description
The application of slippage especially on sqrtPriceX96 - a non-linear representation of price - results
in a vastly exaggerated price buffer, which:
- Defeats the purpose of a slippage limit.
- Opens up the protocol to frontrunning or sandwich attacks.
- Risks executing swaps at unintended price points.

Recommendation
Apply slippage only once, ideally in human-readable price form (price = token1/token0), and then
convert the result to sqrtPriceX96.

Alternatively, pass a slippage-adjusted price directly to the swap() function and remove any internal
recalculation.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2

www.quillaudits.com 31

https://github.com/noma-protocol/core_contracts/commit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2
https://github.com/noma-protocol/core_contracts/commit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2

Noma - Audit Report Medium Severity Issues

Self-Referral Abuse Allows Users to Earn Discounts Resolved

Path
src/bootstrap/Presale.sol

Function
deposit() & payReferrals()

Description
The deposit() function in the presale contract allows users to pass an arbitrary referralCode. However,
this referralCode is later interpreted as the address to receive referral rewards in payReferrals()
 - A user can generate their own referral code from their own address (e.g.,
bytes32(uint256(uint160(msg.sender)))) and pass it to the deposit() function.
- As a result, they receive a percentage of their own deposit back via the referral mechanism.
- This effectively gives them a discount on token purchases at the cost of the protocol.

Additionally:
- msg.value == 0 is allowed, which could result in unintended free mints or bloated contributor lists

Recommendation
•	Restrict Self-Referrals:
o	Check that msg.sender != address(uint160(uint256(referralCode))) during deposit()
•	Use a Mapping for Referral Attribution
•	Best to use nonreentrant modifier and access control for the payReferrals function

Fixed in
8b04984163c4894185e1e1ca96bd3328d42f8186

www.quillaudits.com 32

Noma - Audit Report Medium Severity Issues

Inconsistent use of transfer methods in LendingVault
could lead to failed token transfers

Resolved

Path
src/vault/LendingVault.sol

Function
rollLoan(), borrowFromFloor()

Description
The LendingVault contract inconsistently uses transfer and safeTransfer methods for token transfers,
which could lead to failed transfers if tokens like USDC or USDT are blacklisted or if they return false
instead of reverting. In the borrowFromFloor function, the contract uses transfer without checking the
return value

LendingVault.sol
 IERC20(_v.pool.token1()).transfer(who, borrowAmount - loanFees);

Recommendation
Use safeTransfer from the SafeERC20 library for all token transfers to ensure that failures are detected
and handled appropriately

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/761ab042fdcd72948ba5a9fb715c83b1ea2f3a29

www.quillaudits.com 33

https://github.com/noma-protocol/core_contracts/commit/761ab042fdcd72948ba5a9fb715c83b1ea2f3a29
https://github.com/noma-protocol/core_contracts/commit/761ab042fdcd72948ba5a9fb715c83b1ea2f3a29

Noma - Audit Report Medium Severity Issues

Front-Running the notifyReward Call to Exploit Re-
base Gains

Resolved

Path
src/staking/Staking.sol

Function
stake() and unstake()

Description
The staking contract allows any user to call the stake() function at any time, including moments im-
mediately before the notifyReward() function is called by the vault (which is assumed to be respon-
sible for funding staking rewards and triggering a rebase event).
immediately before the notifyReward() function is called by the vault (which is assumed to be respon-
sible for funding staking rewards and triggering a rebase event).
Since staking rewards are distributed via rebasing and sNOMA is minted 1:1 to the user’s input (before
any rebase logic runs), a malicious actor can:
1.	Monitor for an impending notifyReward() call, possibly through off-chain bots or mempool monitoring.
2.	Front-run the rebase by calling stake() with a large amount of NOMA just before the reward is distributed.
3.	Rebase increases the value of sNOMA across all holders, including the attacker.
4.	Immediately unstake after the rebase, realizing an instant, risk-free profit without long-term staking
commitment.
This behavior disincentivizes long-term stakers and creates a competitive, unfair environment favor-
ing sophisticated actors with the ability to monitor or front-run transactions.

www.quillaudits.com 34

Noma - Audit Report Medium Severity Issues

Recommendation
1.	Introduce a warm-up or lock-in period for newly staked tokens (e.g., 1 epoch or X blocks), during which
rewards are not earned or withdrawal is restricted.
2.	Snapshot-based reward accounting: Only users who were staked before the notifyReward() snapshot
should receive rewards for that epoch.
3.	Add a cooldown or minimum stake duration before unstaking is allowed.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2

Fixed by
67e14bab6ffc804aae645aae4cc61f5b7ebd2883

www.quillaudits.com 35

https://github.com/noma-protocol/core_contracts/commit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2
https://github.com/noma-protocol/core_contracts/commit/9a03dd7ed91d51ba91a70c0b8cd8a24ab88391c2

Noma - Audit Report Low Severity Issues

Low Severity Issues

Presale can exceed hardcap Resolved

Path
src/bootstrap/Presale.sol

Function
finalize()

Description
The deposit function in the Presale contract performs an incorrect validation check that could allow
contributions to exceed the intended hardcap limit. The check is performed before the new contribu-
tion is added to the total, and it only reverts if the current balance is already greater than the hardcap.

Recommendation
Adjust the function this way to protect from overflowing the hardcap

Fixed in
06762639187916b5a9d171856b62f5d8fc723aef

www.quillaudits.com 36

Noma - Audit Report Low Severity Issues

Comments mismatch with slippage value Resolved

Path
src/bootstrap/Presale.sol

Function
finalize()

Description
In Presale contract, slippage check is calculated in the finalize() function to ensure the stability of the
price. But the issue is that the comment has mentioned slippage to be 0.1% and the actual slippage
calculated in contract is 0.5% which is higher and is mismatched from the sentence.

Recommendation
It is recommended to change slippage value to match the comment or comment value to match the
calculated value

Fixed in
5dfa744e9e25b14f01c755bb3ef09291ba39dfb0

www.quillaudits.com 37

Noma - Audit Report Low Severity Issues

stake() function takes _to value can cause revert Resolved

Path
src/staking/Staking.sol

Function
stake()

Description
In staking contract, stake() function takes _to parameter where sNOMA tokens are minted but staked-
Balances is increased for msg.sender. Then while in unstake() function _from parameter is used. So
if user puts different address while staking then unstake() function might revert.

Recommendation
To resolve the issue it is recommended to remove the _to parameter and mint the tokens to the
msg.sender

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/0724cfda3e9e03257f93b4afd4a5705862425a39

Noma Team comment
Acknowledged, it's better to use msg.sender across stake/unstake and remove the address parameter
altogether.

www.quillaudits.com 38

https://github.com/noma-protocol/core_contracts/commit/0724cfda3e9e03257f93b4afd4a5705862425a39
https://github.com/noma-protocol/core_contracts/commit/0724cfda3e9e03257f93b4afd4a5705862425a39

Noma - Audit Report Low Severity Issues

GonsToken implementation only supports upward re-
basing

Resolved

Path
src/staking/Gons.sol

Description
The GonsToken contract has a token rebasing model that allows for upward rebasing (expanding sup-
ply), but there is no mechanism for downward rebasing (contracting supply) as the interface docu-
mentation suggests. In the rebase() function, the implementation only adds to the total supply and
never subtracts.

The function only accepts a non-negative supplyDelta value and adds it to the total supply. There is
no parameter or functionality to indicate a negative rebase (contraction of supply).

www.quillaudits.com 39

Noma - Audit Report Low Severity Issues

Recommendation
Adjust the contract logic / interface documentation appropriately.

Noma Team's comment
Rebases only inflate the supply, so they are unidirectional. Will update the commentary as it is not
in line with the code.

h t t p s : / / g i t h u b . c o m / n o m a - p r o t o c o l / c o r e _ c o n t r a c t s / c o m -
mit/fd3ca697ded8faa9e1e6d48d9b867a036788c78f which was later merged to “audit_ready”

www.quillaudits.com 40

Noma - Audit Report Low Severity Issues

Missing Emergency Switch, Contribution Constraints,
and State Sync in Emergency Withdrawals

Resolved

Path
src/bootstrap/Presale.sol

Function
emergencyWithdrawal() & deposit()

Description
1. No Emergency Mode Toggle:
o	The emergencyWithdrawal() function does not depend on any emergency toggle/switch, meaning it’s
passively time-gated (deadline + 30 days), rather than actively controlled by the protocol or owner.
o	This limits response flexibility in critical failures (e.g., token price manipulation, stuck funds, or an attack
on the protocol).

2.	Improper Error Message:
o	The revert message in emergencyWithdrawal() uses PresaleOngoing() when finalized is true, which is
semantically incorrect. If the presale is finalized, emergency withdrawal shouldn’t be allowed at all, or a
different error like PresaleFinalized() should be used.

3.	State Inconsistency in Emergency Withdrawal:
o	While a user’s individual contributions[msg.sender] is zeroed, the global totalRaised variable is not
decremented.
o	This leads to inflated accounting, which can break invariant assumptions during finalization or analytics.

4.	Commented-Out Contribution Limits:
o	In deposit(), the MIN_CONTRIBUTION and MAX_CONTRIBUTION checks are commented out

Recommendation
1.	Introduce an Emergency Mode Switch
2.	Replace PresaleOngoing() in emergencyWithdrawal() with a clearer message
3.	Decrement totalRaised in the emergencyWithdrawal function
4.	Remove comment and enforce min/max contribution limits
5.	Add msg.value != 0 Check in deposit()

www.quillaudits.com 41

Noma - Audit Report Low Severity Issues

Fixed in
e0e1a1a11efc8ab0d5d1bfa696cf91eefca2a098

And
b40b773f28dc2c4b2d74ebcfddcb38100ad72a6a

And
5ce77cc86ff185c13a01878260d46e3200cd63ae

www.quillaudits.com 42

Noma - Audit Report Low Severity Issues

_authority Parameter Unused in Constructor Resolved

Path
src/token/Gons.sol

Function
constructor()

Description
The _authority parameter is never used within the constructor or stored in a state variable.

Recommendation
Remove the _authority parameter from the constructor to clean up the code and avoid misleading
usage

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/022fa828c6fc2f94a356a03c65b48af6f31983eb

www.quillaudits.com 43

https://github.com/noma-protocol/core_contracts/commit/022fa828c6fc2f94a356a03c65b48af6f31983eb
https://github.com/noma-protocol/core_contracts/commit/022fa828c6fc2f94a356a03c65b48af6f31983eb

Noma - Audit Report Informational Severity Issues

Informational Severity Issues

No self transfer check in GonsToken contract Resolved

Path
src/token/GonsToken.sol

Function
transfer()

Description
In GonsToken contract even if you self transfer the tokens it won’t give error. In normal token transfer
it is prohibited. Here in GonsToken it doesn’t create issues or hinder the ability of protocol working.
But to ensure ERC20 compatibility the check is needed.

Recommendation
To resolve the issue please add a require check for self transfer.

Fixed in
https://github.com/noma-protocol/core_contracts/commit/cd-
feec2f6fe63e0b18ad908b05a47f7a478906b8

www.quillaudits.com 44

https://github.com/noma-protocol/core_contracts/commit/cdfeec2f6fe63e0b18ad908b05a47f7a478906b8
https://github.com/noma-protocol/core_contracts/commit/cdfeec2f6fe63e0b18ad908b05a47f7a478906b8

Noma - Audit Report Informational Severity Issues

Ambiguity in onlyVault modifier allows both vault
and staking contract to call protected functions

Acknowledged

Path
src/staking/Staking.sol

Description
The onlyVault modifier in the staking contract is currently ambiguous, allowing both the vault and
staking contract to call functions protected by this modifier. This could lead to confusion about which
contract is intended to have exclusive access to these functions.

Recommendation
Clarify the onlyVault modifier to ensure it aligns with the intended access control policy. If the inten-
tion is to allow only the vault contract to call these functions, update the modifier.

Noma Team's Comment
This is a design choice

www.quillaudits.com 45

Noma - Audit Report Informational Severity Issues

Unused modifiers Acknowledged

Path
src/vault/LendingVault.sol

Description
There are few modifiers which are not used in contracts.
•	onlyVault in LendingVault
The codebase contains several unused functions, variables, and libraries that contribute to unnec-
essary complexity and potential confusion for developers and auditors. These unused elements can
obscure the code's true functionality and make maintenance more challenging.
•	MockNomaTokenRestricted.sol and Bootstrap.sol are unused.
•	In StakingVault.sol, the LiquidityOps library and functions _collectLiquidity and _transferExcessBalance
are defined but not used.
•	In NomaFactory.sol, the teamMultiSig address is declared but never set, rendering it ineffective.
•	In Presale.sol, the variables MIN_CONTRIBUTION and MAX_CONTRIBUTION are calculated in the
constructor but never used.

Recommendation
To resolve the issue please remove the unused modifier, functions, variables, libraries or use them
accordingly in the contract.

www.quillaudits.com 46

Noma - Audit Report Informational Severity Issues

Redundant condition in TokenFactory's _deployNoma-
Token function

Resolved

Path
src/factory/TokenFactory.sol

Description
The _deployNomaToken function in TokenFactory.sol contains a redundant condition that checks if
the proxy address is greater than or equal to _token1. This check is unnecessary because the logic
of the do...while loop already ensures that this condition will never be true when the loop exits.

Recommendation
The check below can be removed because it is redundant.

 if (address(proxy) >= _token1) revert InvalidTokenAddressError(); // Redundant check

Noma Team's Comment
This is necessary to force the order of tokens in the Uniswap V3 pair.

www.quillaudits.com 47

Noma - Audit Report Informational Severity Issues

Mismatched NatSpec comments and code struc-
tures can cause confusion

Acknowledged

Path
src/factory/TokenFactory.sol

Description
The codebase contains NatSpec comments that do not accurately reflect the corresponding code
structures. This mismatch can lead to confusion for devs trying to understand the intended function-
ality and usage of these structures.

Recommendation
Update the codebase NatSpec comments.

www.quillaudits.com 48

Noma - Audit Report Informational Severity Issues

Commented out solvency variant Resolved

Path
src/vault/LendingVault.sol

Function
borrowFromFloor

Description
The solvency enforceSolvencyInvariant() function is being commented out in the borrrowFromFloor
function in the lending vault.

Recommendation
Uncomment the function call.

Fixed in
https://github.com/noma-protocol/core_contracts/com-
mit/6270164c745486c873ea3d21fc8a38c90fd76b5c

www.quillaudits.com 49

https://github.com/noma-protocol/core_contracts/commit/6270164c745486c873ea3d21fc8a38c90fd76b5c
https://github.com/noma-protocol/core_contracts/commit/6270164c745486c873ea3d21fc8a38c90fd76b5c

Noma - Audit Report Informational Severity Issues

numVaults() is a gas-hungry function that can be
optimized by reading the totalVaults variable

Acknowledged

Path
src/factory/NomaFactory.sol

Function
numVaults()

Description
The function is redundant since the contract already tracks totalVaults as a state variable that is
incremented whenever a new vault is created.

Recommendation
numVaults should return the value for totalVaults instead, or create a getter function for the private
totalVaults variable

www.quillaudits.com 50

Noma - Audit Report Informational Severity Issues

Identical Function Signatures: mintTokens(ad-
dress,uint256) in Multiple Contracts

Acknowledged

Path
src/factory/NomaFactory.sol & src/vault/LendingVault.sol

Function
mintTokens()

Description
Both LendingVault::mintTokens() and NomaFactory::mintTokens() share the same function selector
f0dda65c. This could lead to confusion in logs, tooling, or proxy setups, especially in cases where
introspection or low-level calls are involved.

Recommendation
Consider renaming one of the functions to avoid selector collision

Noma Team's Comment
Actually, since NomaFactory isn’t behind the Diamond proxy, there’s no selector collision possible

www.quillaudits.com 51

Noma - Audit Report Informational Severity Issues

Missing Lender Controls Over Loan Rollovers Acknowledged

Path
src/vault/LendingVault.sol

Function
rollLoan()

Description
The rollLoan function allows borrowers to extend (roll) their loan duration and increase borrow amoun-
ts, without any lender-side constraints or approval. There is no restriction on the number of rollovers,
total duration, or borrower eligibility.

As a result:
•	Borrowers may infinitely roll their loans
•	Lenders may be locked into illiquid positions
•	There is no mechanism for lenders to enforce repayment or liquidation, despite borrower expiry or un-
dercollateralization risks

Recommendation
Introduce lender-side constraints and controls, such as:
•	Maximum number of rollovers
•	Maximum cumulative duration per loan

Noma Team's Comment
There is no undercollateralization risk as the loan can’t go under water.

www.quillaudits.com 52

Noma - Audit Report Informational Severity Issues

Missing or Extra Struct Variables Compared to Doc-
strings

Acknowledged

Path
src/types/Types.sol

Function
N/A

Description
Multiple struct definitions in the codebase contain discrepancies between their declared fields and
the comments/documentation provided. This creates confusion and increases the likelihood of bugs,
misconfigurations, or developer misunderstanding.
1.	Struct: RewardParams
a.	Missing: imv, spotPrice, totalSupply, kr
b.	Unexpected: totalStaked (not mentioned in comment)
2.	Struct: ProtocolParameters
a.	Docstring omits: shiftAnchorUpperBips, slideAnchorUpperBips, and all the fee-related fields
b.	These may be valid additions, but comments should be updated accordingly
3.	Struct: LiquidityInternalPars
a.	Docstring doesn’t match the struct at all — likely refers to a different struct entirely
b.	The struct itself is clear, but needs correct documentation

Recommendation
Synchronize docstrings with actual struct fields — ensure the comments reflect reality

www.quillaudits.com 53

Noma - Audit Report Closing Summary & Disclaimer

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

Closing Summary
In this report, we have considered the security of Noma. We performed our audit according to
the procedure described above.

Some issues of High (2), Medium (14), Low (6) and Informational (10) severities are found. Most
of the issues were resolved by Noma Team and few of them were acknowledged .

Disclaimer
At QuillAudits, we have spent years helping projects strengthen their smart contract security.
However, security is not a one-time event—threats evolve, and so do attack vectors. Our audit
provides a security assessment based on the best industry practices at the time of review,
identifying known vulnerabilities in the received smart contract source code.

This report does not serve as a security guarantee, investment advice, or an endorsement of
any platform. It reflects our findings based on the provided code at the time of analysis and
may no longer be relevant after any modifications. The presence of an audit does not imply
that the contract is free of vulnerabilities or fully secure.

While we have conducted a thorough review, security is an ongoing process. We strongly
recommend multiple independent audits, continuous monitoring, and a public bug bounty pro-
gram to enhance resilience against emerging threats.

Stay proactive. Stay secure.

www.quillaudits.com 54

Noma - Audit Report

www.quillaudits.com 55

May , 2025

www.quillaudits.com audits@quillaudits.com

